PHOTOSENSITIZED OXYGENATION OF A DIPYRRYLMETHENE*

David A. Lightner and Dave C. Crandall[†] Department of Chemistry, Texas Tech University Lubbock, Texas 79409

(Received in USA 19 March 1973; received in UK for publication 3 April 1973)

Although the dye-sensitized photooxygenation of monopyrroles has received increasing attention¹ beginning with the pioneering work of de Mayo and Reid² on pyrrole and N-ethyl-pyrrole and more recently with various investigations of phenyl-substituted³ and alkyl-substituted pyrroles^{1,4}, there has been only one report on the photooxidation of a dipyrrole⁵ and no reports on the photooxidation of dipyrrylmethenes. Our interest in the photooxidative behavior of these substances arises from our investigations on the photodestruction of biliverdin⁶ and bilirubin^{5,7} during jaundice phototherapy.⁸ Biliverdin, which possesses a dipyrrylmethene chromophore, is produced during <u>in vitro</u> photooxidation of bilirubin and is thought by some workers⁹ to be an important intermediate in the bilirubin breakdown. It has also been implicated as a singlet oxygen, ¹⁰₂, quencher¹⁰. For a variety of reasons, therefore, the photooxidation behavior of a dipyrrylmethene was of interest and importance.

Our initial work was begun on the readily synthesized 3,5,3',5'-tetramethyl-4,4'diethyldipyrrylmethene (1),¹¹ the hydrochloride salt of which was prepared by condensing kryptopyrrole aldehyde¹² with kryptopyrrole¹³ in ether in the presence of dry HCl. The free base (1) was generated from the hydrochloride by treatment with aqueous ammonia. The rate of photooxidation of the hydrochloride of (1) in methanol was slower (50% destroyed in 12 hrs) than that of the free base (50% destroyed in 1.5 hrs). With added Rose Bengal ($^{10}_{2}$ sensitizer) photodestruction of (1) was complete in less than 1/2 hr. A dilute (0.42 mmole %) methanolic solution of (1) containing 3.3 mg % of Rose Bengal was photolyzed¹⁴ in a

^{*}This work was generously supported by the National Science Foundation (GP-35699) and the National Institute of Child Health and Human Development, U.S. Public Health Service (HD-07358) [†]National Science Foundation Undergraduate Fellow, 1970-72, and University of California President's Undergraduate Fellow, 1971-72.

water-cooled Pyrex immersion apparatus while a slow stream (30 ml/min) of oxygen was bubbled through the reaction vessel. After a photolysis period of 50 minutes the intense longwavelength absorption maximum (445 nm) had disappeared, and the photolysis was terminated. Following evaporation of methanol <u>in vacuo</u>, the photolysate was chromotographed on silica gel (E. Merck, Darmstadt, 70-325 mesh ASTM) using a gradient elution (benzene + chloroform + ether + ethylacetate + methanol) technique to give a separation of four major components: 4-ethyl-5methoxy-3,5-dimethyl- Δ^3 -pyrrolin-2-one (2), 4-ethyl-5-hydroxy-3,5-dimethyl- Δ^3 -pyrrolin-2-one (3), 4-ethyl-3-hydroxy-3,5-dimethyl- Δ^4 -pyrrolin-2-one (4) and 4-ethyl-5-methoxymethyl-3-methylpyrrole-2-carboxylic acid methyl ester (5). The structures were characterized by a combination of spectroscopic methods (see Table) and also - in the case of (5) - by independent synthesis from kryptopyrrole 2-carboxylic acid methyl ester by N-bromosuccinimide monobromination at the α -methyl group followed by methanolysis.

Methoxylactam (2) is visualized as arising <u>via</u> endoperoxide (6) in a manner akin to that observed for another tetrasubstituted pyrrole, 3,4-diethyl-2,5-dimethylpyrrole¹⁵ or bilirubin.⁷ Alternatively, it might arise from a secondary photooxidation on the kryptopyrrole aldehyde¹⁶ enamating from normal cleavage¹⁷ of dioxetane (χ). Formation of (χ) might be expected from the photooxidation results of bilirubin and model dipyrrylmethenones.⁵ However, we cannot as yet rationalize the formation of (3), (4) and (5). Both hydroxylactams, (3) and (4) are formed during the photooxidation of kryptopyrrole.¹⁸ It might be surmised therefore that (3) and (4) are derived from any kryptopyrrole arising <u>via</u> retrocondensation of (1). Since the relative yields of (3) and (4) from photooxidation of kryptopyrrole are more nearly 1:1¹⁸ rather than the 2:1 seen here; kryptopyrrole cannot be the sole source of (3) and (4), if it is a precursor at all. We have also shown that (5) is a photooxidation product of kryptopyrrole 2-carboxylic acid methyl ester,¹⁸ but other products are formed as well; hence, we cannot necessarily conclude that it is precursor to (5) in the photooxidation of (1). The mechanistic details of these reactions are currently under investigation.

Compound Yield (mole/mole %) M.p. (°C)	MS m/e	¹ Η-NMR (CDC1 ₃ <u>vs</u> . TMS,δ in ppm)	IR (KBr, cm ⁻¹)
$\begin{array}{c} C_2^{H_5} \\ C_{H_3}^{C_{H_3}} \\ C_{H_3}^{O} \\ H \end{array} \begin{array}{c} C_{H_3}^{O} \\ H \end{array} \begin{array}{c} C_{H_3}^{O} \\ C_{H_3}^{O} \end{array} \begin{array}{c} C_{H_3}^{O} \\ C_{H_3}^{O} \\ H \end{array} \begin{array}{c} C_{H_3}^{O} \\ C_{H_3}^{O} \\ C_{H_3}^{O} \end{array} \begin{array}{c} C_{H_3}^{O} \\ C_{H_3}^{O$	169.1105 (M ⁺ , C _o H ₁₅ NO ₂)	<u>b</u> 1.14 (CH ₂ /t)	1689 (v C=O)
	154 (M-CH ₂)	1.48 (CH_/s)	
	140 $(M-C_2H_E)$	1.79 (CH ₃ /s)	
	138 (M-0CH2)	2.24 (CH ₂ /q)	
31%	- 3	2.95 (OCH_/s)	
84-85°		7.68 (NH/br. s)	
C_2H_5 CH_3 H_0 H_1 CH_3 H_0 H_1 CH_3 CH_3 CH_3 (3)	155.0943 (M ⁺ , C _R H ₁₃ NO ₂)	1.17 (CH ₃ /t)	1670 (ν C≖O)
	140 (M-CH ₃)	1.51 (CH ₃ /s)	
	138 (М-ОН)	1.73 (CH ₃ /s)	
	126 (M-C ₂ H ₅)	2.35 (CH2/q)	
	2 5	2.90-3.50 (OH/br. s)	
		6.83 (NH/br. s)	
с _{ан-} сн _а (4)	155.094] (M ⁺ , C ₂ H ₁₂ NO ₂)	1.16 (CH ₂ /t)	1701 (ν C=O)
^{2¹5} ¹ 3 ¹ ¹ 20-122.5°	140 (M-CH ₂)	1.51 (CH ₃ /s)	1625 (ν C=C)
	138 (M-OH)	1.80 (CH ₂ /s)	
	126 (M-C ₂ H ₆)	2.34 (CH ₂ /q)	
	E J	7.17 (NH/br. s)	
C!!	211.1204 (M ⁺ , C ₁₁ H ₁₇ NO ₂)	<u>b</u> 1.02 (CH ₂ /t	
(5)	196 (M-CH ₂)	2.20 (CH ₂ /s)	
30CH2 / N CO2CH3	180 (M-OCH ₂)	2.37 (CH ₂ /q)	
	166 (M-CH_OCH_)	3.22 (OCH ₂ /s)	
	148 (M-CH2OH-OCH2)	3.78 (OCH ₃ /s)	
85-86°	134 (M-CH_OH-CH_OCH_)	4.33 (OCH_/s)	
	120 (M-CH_OH-CO_CH_)	9.63 (NH/br. s)	

Table. Physical and spectroscopic data^a for the photooxygenation products of 3,5,3',5'tetramethyl-4,4'-diethyldipyrrylmethene

a Mass spectra were determined on a CEC MS 491-21 or an AE1 MS-9 mass spectrometer, nuclear magnetic resonance (NMR) were run on a Varian T-60 instrument, infrared spectra were run on a Perkin-Elmer 421 spectrophotometer.

<u>b</u> CCl₄ solvent.

- 1. For leading references see D. A. Lightner and L. K. Low, <u>Chem. Commun.</u>, 625 (1972).
- 2. P. de Mayo and S. T. Reid, Chem. Ind. (London), 1576 (1962).
- H. H. Wasserman and H. Liberles, <u>J. Amer. Chem. Soc.</u>, 82, 2086 (1960); H. H. Wasserman and A. H. Miller, <u>Chem. Commun.</u>, 199 (1969); G. Rio, A. Ranjon, O. Pouchet and M-J. Scholl, <u>Bull. Soc. Chim. France</u>, 1667 (1969); R. W. Franck and J. Auerbach, <u>J. Org.</u> <u>Chem</u>., <u>36</u>, 61 (1971).
- 4. R. Ramasseul and A. Rassat, <u>Tetrahedron Lett.</u>, 1337 (1972).
- 5. D. A. Lightner and G. B. Quistad, Nature New Biology, 236, 203 (1972).
- 6. D. A. Lightner and D. C. Crandall, Fed. Europ. Biochem. Soc. (FEBS) Lett., 20, 53 (1972).
- 7. D. A. Lightner and G. B. Quistad, Fed. Europ. Biochem. Soc. (FEBS) Lett., 25, 94 (1972).
- For leading references see D. Bergsma, D. Y.-Y. Hsia and C. Jackson, eds., <u>Bilirubin</u> <u>Metabolism of the Newborn</u>, Williams and Wilkins, Baltimore, 1970.
- 9. J. D. Ostrow and R. V. Branham, <u>Gastroenterology</u>, <u>58</u>, 15 (1970).
- 10. A. F. McDonagh, Biochem. Biophys. Res. Commun., 48, 408 (1972).
- 11. H. Fischer and H. Orth, <u>Die Chemie des Pyrrols</u>, Bd II, 1. Hälfte, Akademische Verlagsgesellschaft M.B.H., Leipzig, 1934, page 18.
- Prepared in 80-85% yield by a Vilsmeier-Haack reaction on kryptopyrrole.
- H. Fischer, <u>Org. Syntheses</u>, Coll. Vol III, 513 (1955). An improved version of this synthesis involves concurrent Wolff-Kishner reduction, ester saponification and decarboxylation by heating ethyl 4-acetyl-3,5-dimethylpyrrole-2-carboxylate with hydrazine and KOH in diethylene glycol.
- 14. Westinghouse tungsten-halogen quartz lamp, 120V, 500W, No. 500 Q/CL, run at 100V.
- 15. D. A. Lightner and G. B. Quistad, Angew. Chem., 84, 216 (1972).
- Photooxidation of kryptopyrrole aldehyde in methanol gives a 53% isolated yield of (2).
 G. B. Quistad and D. A. Lightner, <u>J. Heterocyclic Chem.</u>, in press.
- 17. C. S. Foote and J.W.-P. Lin, <u>Tetrahedron Lett.</u>, 3267 (1968).
- 18. D. A. Lightner and D. C. Crandall, Experientia, in press.